2 00 7 On the Complexity of the Interlace Polynomial ∗

نویسندگان

  • Markus Bläser
  • Christian Hoffmann
چکیده

We consider the two-variable interlace polynomial introduced by Arratia, Bollobás and Sorkin (2004). We develop two graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we prove that the interlace polynomial is #P-hard to evaluate at every point of the plane, except at one line, where it is trivially polynomial time computable, and four lines and two points, where the complexity mostly is still open. This solves a problem posed by Arratia, Bollobás and Sorkin (2004). In particular, we observe that three specializations of the two-variable interlace polynomial, the vertex-nullity interlace polynomial, the vertex-rank interlace polynomial and the independent set polynomial, are almost everywhere #P-hard to evaluate, too. For the independent set polynomial, our reductions allow us to prove that it is even hard to approximate at every point except at −1 and 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 7 On the Complexity of the Interlace Polynomial ∗ Markus Bläser , Christian Hoffmann

We consider the two-variable interlace polynomial introduced by Arratia, Bollobás and Sorkin (2004). We develop two graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we ...

متن کامل

On the Complexity of the Interlace Polynomial

We consider the two-variable interlace polynomial introduced by Arratia, Bollobás and Sorkin (2004). We develop two graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we ...

متن کامل

The Interlace Polynomial : a New Graph Polynomialrichard Arratia

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and sp...

متن کامل

Distance Hereditary Graphs and the Interlace Polynomial

The vertex-nullity interlace polynomial of a graph, described by Arratia, Bollobás and Sorkin in [ABS00] as evolving from questions of DNA sequencing, and extended to a two-variable interlace polynomial by the same authors in [ABS04b], evokes many open questions. These include relations between the interlace polynomial and the Tutte polynomial and the computational complexity of the vertex-null...

متن کامل

A multivariate interlace polynomial

We define a multivariate polynomial that generalizes several interlace polynomials defined by Arratia, Bollobas and Sorkin on the one hand, and Aigner and van der Holst on the other. We follow the route traced by Sokal, who defined a multivariate generalization of Tutte’s polynomial. We also show that bounded portions of our interlace polynomial can be evaluated in polynomial time for graphs of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007